If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2-12x+56=0
a = -8; b = -12; c = +56;
Δ = b2-4ac
Δ = -122-4·(-8)·56
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-44}{2*-8}=\frac{-32}{-16} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+44}{2*-8}=\frac{56}{-16} =-3+1/2 $
| 5x+1=9x+-7 | | z+24=2z–99 | | 4(2x-5)=4x+34+2(2x+) | | x*3=294 | | z+24=2z–99° | | 55+p=42 | | 2/2j-1/7=3/14 | | 4h^2+3h-7=0 | | -57+57=−75x+75 | | 3.5(3x+2)=5 | | -8n^2+2/9=0 | | 5(g=17) | | (7/3)(3x+2)=5 | | 7/3(3x+2)=5 | | 27=3x^2 | | 1=-x+2x-10 | | 24/k=8 | | 19+x=73 | | 6/13x+1/4=2/5-7/13x+2/5 | | 4x-5(2x+1)=6+1 | | w-105=764 | | 2(3.14)r=7850 | | 2(12x-8)=11x-6+13x-2 | | -5(x-4.2)=6.4 | | 4u+(-3)=1 | | 2x-10x=-48 | | n+4.1=5.5 | | 22p+12=58 | | s+15.5=17 | | 180=54+2y | | 5x-5=-2x+9 | | 4x-3=6x+18 |